Sweat Is Your Friend

This summer was one of the hottest summers on record. Several people have asked me how I managed to survive. My response: I didn’t notice. I didn’t notice it was unusually hot in spite of spending much of my time outdoors training for a marathon and doing my errands by bike. I didn’t notice precisely because, counter-intuitively, these activities caused me to sweat and my sweat kept me cool. How could this be?

For some reason our culture has an aversion to sweat. Our media keeps up a constant barrage of messages about how we must avoid sweating and that if we do somehow err by sweating we must hide it at all costs. Of course there is a place for personal hygiene and we must take care not to impose our old smelly sweat on our fellow citizens. But we sweat for a reason–to keep ourselves cool–and furthermore we are very good at sweating.

A recent Scientific American article described how one of the most basic ways our human ancestors gained an advantage over other predators is by our ability to sweat. No other animal sweats as well as we do. This ability enabled our ancestors to track large game until it fell over from heat exhaustion, a technique known as persistence hunting. Many other animals can outrun us for short distances. But we are the masters of long distance running on this planet. A human can run a marathon faster than a horse, because the horse will keel over from heat exhaustion before it gets to the finish line. And so how do we make use of this great ability of ours in modern times? Do we augment our ability to keep cool in some way as we have done with so many of our other abilities? No, instead we vilify anyone who sweats in public. It is outrageous to me that we subvert this great advantage we have for dealing with hot weather, then complain about the weather, then build big machines to make ourselves cooler, and finally watch complacently as these machines contribute to the very climate warming we were complaining about.

I propose that instead of looking at sweat as the enemy we learn to harness it for its intended purpose: to cool us down. It is much more energy efficient to cool ourselves individually (perhaps with motion or fans) than to use big energy-intensive machines to cool down entire rooms and buildings. And it is the height of hypocrisy and inefficiency that our cars are designed to be basically greenhouses on wheels. As a result they must carry massive air conditioning equipment to keep their occupants cool. Instead, cars could make use of our natural abilities to cool ourselves by sweating and combine that with the built-in breeze of their forward motion.

Air conditioning will be one of the first superfluous accessories jettisoned by our lightweight/narrow/slow cars of the future. What will replace it? Think about the vents cars have now and how they could be improved. It seems that no one in our bone-headed auto industry has taken the time to reconsider the simple air vent. What are some ways it can better put a breeze where it’s needed? For that matter, where is the breeze needed? Sweating effectively requires having airflow over one’s back. Current cars place your back squarely in a cushy seat with no possibility of air flow. What if for starters cars had mesh seats? What if we had the vents blow directly from the seat onto our backs? Or better yet, what if we had ventilated clothing that clipped directly into the car’s cooling system? And we won’t need any kind of sophisticated automatic temperature control. Just provide a steady air flow and your body will sweat or not as necessary to keep itself comfortable.

You are probably wondering “What if I don’t have one of those lightweight/narrow/slow cars of the future? How can I keep cool by sweating while traveling?” If such is the case I propose that you make do with an electric cargo bike, which is the next best thing to a lightweight/narrow/slow car of the future. Here are my tips for sweating more effectively in hot weather:

  • Use an electric bike. Moving on an electric bike is especially nice since it can provide a breeze without so much exertion. And if you are on foot, my experience is that someone can actually stay cooler by running slowly and efficiently rather than walking. The faster airflow from running combined with sweating kept me cooler than the slower airflow (but less exertion) of walking. However, running efficiently takes practice. It probably also helps to be thin.
  • Don’t wear a backpack while biking. Backpacks block air flow. Get a cargo bike so you can carry your stuff off your body.
  • Wear sunscreen.
  • Go shirtless. Don’t be a prude dude. Let the sweat out. But carry a jacket for when you stop.
  • Carry twice as much water as you think you’ll need. You’ll need it.
  • Only stay in the sun if you are moving. The airflow will keep you from overheating.
  • Cool down in front of a fan after biking. You will notice a surge in body temperature after you stop biking, with a corresponding surge in sweat output. Don’t waste that sweat! Cool down with whatever breeze and fan and shade you can find. Only after the sweat has completely evaporated should you take a shower if circumstances require.

So this summer by following these simple tips I actually looked forward to biking and running as an opportunity to go outside and cool down. I did not let the weather reports dictate whether or not I could go outside. Don’t believe me? Try befriending your sweat!

My Solar Bicycle

I am anticipating peoples’ reactions:

“Why do you have solar panels on your bicycle?”

“What do you do when it rains?”

“Can the solar panel drive the electric motor directly?”

“Did you make it yourself?”

“What the…”

Allow me to explain. My vehicle of choice is a “stoked Xtracycle”. (For those of you not “in the know”, an Xtracycle is a type of cargo bike that has an extra long frame. And “stoked” means that my bike has a Stokemonkey electric motor that helps me out on the hills.) In general this summer I’ve been biking 10 to 20 miles a day and then recharging my battery overnight by simply plugging it into an outlet. However, next week I’m going on a 3-day 240-mile camping trip through the Adirondacks where I might not have access to an outlet. The solar panels will help extend the range of my bicycle. So to answer your questions:

“Why do you have solar panels on your bicycle?”

I use them to extend the range of my electric cargo bike for long trips (plus they were fun to make). I will carry two batteries on my trip, each giving my bike a range of 20 to 40 miles. On a sunny day the solar panels can recharge one of the batteries while I am riding, adding an additional 20 to 40 miles for a total range of 60 to 120 miles a day. I anticipate some hills and I’ll be carrying a load, so a 60-mile range is probably more accurate. I may need to pedal the last few miles on some days.

“What do you do when it’s cloudy or it rains?”

I plan to stay in a hotel some of the time and recharge my batteries there.

“Can the solar panel drive the electric motor directly?”

Not really. The solar panels don’t produce enough electricity instantaneously. For example the solar panels only produce about 40 watts of power at a given moment, whereas my bicycle needs about 400 watts of power to go up a hill. The main purpose of the solar panels is to charge the battery over time.  Since charging happens slowly, 40 watts is enough to charge the battery. It takes roughly 10 hours of charging to store one to two hours’ worth of electrified riding time in the battery. And one to two hours of riding translates into 15 to 30 miles.

“Did you make it yourself?”

I already had the stoked Xtracycle, which is described on my About This Bike page. As you can read there, an electric cargo bike can be had for $1000 to $3500. And I had already constructed the canopy frame for a previous project, the Bike Wagon Canopy ($150). I found the canopy was somewhat wobbly with the weight of the solar panels so I had to strengthen it with guy wires. It remained for me to add the solar panels and the electronics. I used maritime-grade solar panels that were designed to keep sailboat starter batteries charged up, so they are extra-sturdy and consequently somewhat expensive. I’ve since seen panels with almost twice the power at 3/4 the price. Cost of panels: $900 to $1200. I am using three 12-volt panels in series to produce the 36 volts required by my battery. I spent a lot of time researching what sorts of electronics I would need between the panels and the battery, and finally concluded that I can just plug the panels into the battery directly. (I plan to write more about this in a later post.)

Total cost for a solar bicycle: $2050 to $4850. Not bad for a vehicle that can get you both out of the car and off the grid.

How to Make the Bike Wagon Canopy for Xtracycles

Bike Wagon canopy

In a previous post I described a canopy that Thea and I made for our Xtracycle to protect her from wind and rain. It looks sort of like a covered wagon on the back of our bike. It was easy to build without special tools or parts, did not require modifying our bike and cost us less than $150 for parts. It weighs about 2 lbs. and we can set it up in less than five minutes. Here’s how to make it.

Materials You Will Need

Tools You Will Need

Ordering Suggestions

order from Quest Outfitters:

#1024 1.1 OZ SILNYLON 1STS , (Tan)…3 at $9.99 =  $29.97
#4060 TENT POLE W/ INS .625 18 inch Black…4 at $4.95 = $19.80
#4061 TENT POLE W/O INS .625 18 inch Black…1 at $3.95 = $3.95
#4018 TENT POLE W/INS. .340 18 inch Black…12 at $2.60 = $31.20
#4019 TENT POLE W/O INS .340 18 inch Black…2 at $2.20 = $4.40
#4055 TENT POLE ARCH-145 DEGREE .340 BLACK…4 at $2.95 = $11.80
#2000 WEBBING- NYLON MED WT 1/2 inch Black..25 at $0.49 = $12.25
#3026 SIDE RELEASE BUCKLES – 1/2 inch…4 at $0.39 = $1.56
#4200 tubing cutter…$7.95
#3235 grommet tool (5/16″)…$10.99
#3231 (10) 5/16 grommets…10 at $0.18 = $1.80

purchase at a hardware store:

(1) 7/8″ x 48″ dowel…$3
(4) 3/4″ long wood screws…$1
(4) #6 x 3/4″ machine screws and nuts…$1
25 feet of light tie-down cord such as cotton clothes line…$5

TOTAL: $145.67

How to Make the Canopy Cover

The rectangular canopy cover fits over the canopy frame and is secured at the bottom with tie-down straps. The front and back of the cover can be cinched up with a drawstring like a covered wagon. If you like, the cover’s size can be adjusted, along with the frame’s pole lengths, for different sizes of passenger. The size I give here is appropriate for a large child or small adult.

How to Make the Canopy Frame

How to Assemble the Canopy

CAUTION: do not leave your canopy frame uncovered. Without the cover it is only held together by friction. If jostled it could come loose and snap back with surprising force (and for example break a garage window as I learned from experience). DO NOT ride your bike with an uncovered frame (again as I learned from experience you don’t want to be picking up all 20 tent poles in traffic). If you want to use the frame for some purpose other than the Bike Wagon canopy, consider putting a shock cord within it or using external guy wires as I do for using it to support my solar panels.

Final step: do me the courtesy of sending me a photo of your finished canopy!

How to Cut an Aluminum Tent Pole with a Pipe Cutter

How to Add a Grommet to the Canopy Cover

How to Make a Canopy Sack

If you have enough cloth left over you can use it to make a canopy sack.

Tension, Integrity, and the Design of Lightweight Vehicles

The ElectraFlyer ultralight. Note the guy wires. Its electric motor weighs twice as much as my Stokemonkey motor (26 vs. 13 pounds) but it has 18 times the horsepower. The battery weighs 6.5 times my 36v 10ah Prismatic LiFePo4 (78 pounds vs. 12 pounds) but produces about 10 times the power. An Xtracycle with this monster motor and battery would add 104 pounds to the bike but would increase the range to 250 miles. Add that wing, throw in a propeller and my Xtracycle could fly!
Thomas Morse Scout showing guy wires. Incidentally this plane was manufactured in Ithaca the small town where I live.

I’ve been trying to wrap my head around guy wires. No that doesn’t mean wires made by guys. It means a tensioned cable used to brace parts of a structure or vehicle. For example have you ever noticed the cables forming Xs between an old biplanes’ wings? Those cables prevented the two wings from moving relative to each other. They also made it possible for a biplane to be lightweight. As biplanes’ motors became more powerful weight has not been so much of  a factor and you don’t see as many or any cables on a modern biplane. However you do see cables on ultralight aircraft as shown. More and more you see cables used in architecture. I argue that we need to use more cables—and parts under tension in general—in the design of our cars.

Guy wires to stabilize my solar canopy.

I recently needed to add guy wires to my Bike Wagon canopy design because when I put my solar panels on top of the canopy, the added weight made the canopy wobbly. A few cable Xs solved the problem. It got me thinking about how the design of ultralight airplanes and bicycles and lightweight vehicles in general requires using tensegrity. Say what? “Tensegrity” is a word that American architect and inventor Buckminster Fuller made up by combining the word “tension” with the word “integrity” to describe a new building technique. The basic idea is that you can make way cool lightweight structures by combining something with structural integrity (such as a hunting bow) with something that is under tension (such as the bow string).Tensegrity structures can have the unnerving property that the beams of the structure don’t actually touch each other (see the Tensegritoy below). Our bodies themselves use tensegrity: our bones provide the structural integrity and our ligaments and muscles provide the tension.

A wonderful way to get hands-on experience with tensegrity is to order a Tensegritoy kit.

The bicycle wheel is another good example of tensegrity. Back in the day wheels were constructed using wooden spokes. The spokes needed to be thick and heavy. The bicycle wheel, in contrast, uses tensegrity. The rim provides the structural integrity and the spokes provide the tension. This design creates a very strong lightweight wheel. A car wheel (excepting the occasional MG) does not use tensegrity; it is solid metal. A car’s large powerful internal combustion engine overwhelms any need for weight savings. Incidentally there are commercially successful bike frames that use tensegrity.

The Millenium Dome in London is constructed out of steel towers and tensioned fabric.

Tensegrity is a revelation in architecture. The first large buildings relied on gravity and the compression strength of stone to hold themselves up. Then with the invention of the steel I-beam, buildings could use the structural integrity of the I-beams to hold themselves up. More and more architects are experimenting with tension components such as steel cables and fabric. Some of these structures are what the layman would call a tent. However, we’re talking tents that are very large permanent structures such as the 1,200 ft. wide (365 m) Millennium Dome. Two related ideas are tensile structures (elements carrying only tension and no compression or bending) and tensairity structures (pneumatic structures that use inflated airbeams and attached stiffeners or cables).

Buckminster Fuller's Dymaxion Car. It was about 6 feet tall, seated the driver and 10 passengers, weighed less than 1000 lbs., went 120 miles/hr on a 90 horsepower engine, and got between 30-50 miles to the gallon of gas!

I believe road vehicles need to undergo a similar transition—from compression to tension components in their construction—so that they can become light enough to be powered by humans and by sunlight. Contemporary cars have structural integrity mainly by virtue of the strength of steel. I envision lightweight slow small vehicles that use aluminum poles, cables, and fabric to give them shape. Is this possible? It can’t hurt to dream big. In 1930 Buckminster Fuller’s own car invention, the Dymaxion Car, weighed less than 1000 pounds and could carry 10 passengers.

The Once and Future Microcar

The 1965 Peel P50 microcar.

I’ve been sharing with people my ambition to turn my Xtracycle “cargo bike” into a microcar. This has led me to ask what exactly is a microcar? And what would it take to give an Xtracycle the functionality of a microcar?

Microcar 101

It turns out microcars are not a new idea—they’ve been around since the dawn of the twentieth century. They are basically very small cars, usually between 150 and 1,000 pounds, powered by a 49cc to 500cc motorcycle-like engine or an electric motor, and often they are three-wheeled. They tend to be very cute and have become the objects of desire for many collectors and clubs. Various forces have caused microcars to wax and wane in popularity. For example they flourished after both World War I and World War II, perhaps as a way for people to economize. They also tend to flourish in places where their small size gives them tax, insurance, or drivers’ licensing advantages. Because of these economic forces, microcars are more popular in Europe and Japan than the U.S. For example in Austria and France they have a reputation for being the vehicle of last resort for people who lost their driver’s license for drunk driving. In some European countries, they became popular because taxes and insurance used to depend on engine displacement or  power. Modern Japanese microcars, called Kei cars, are designed to exploit local tax and insurance regulations, and in more rural areas are exempted from the requirement to certify that adequate parking is available for the vehicle.

I believe (and others believe) the time is right for the microcar to rise again, and I believe the bicycling community will have a hand in that transformation. There is a vacuum forming in our transportation system for a slow narrow vehicle that weighs between 100 and 1000 pounds. The car manufacturers don’t seem interested in coming down from their planet-wrenching upper end of the weight scale. It’s left up to the bike manufacturers to come up from the low end, to produce an intermediate-sized vehicle. My electric-assist “stoked” Xtracycle already has some of the specs of the smallest microcar, the Peel P50. The P50 weighed 130 pounds; my stoked Xtracycle with a canopy enclosure and other amenities will weigh about the same. The P50 has a 4.2 horsepower (3,131 watts) motor; my electric motor can put out 750 watts, which, along with some human power thrown in, might sometimes reach half that power on a good day. We’ve got the beginnings of a microcar here.

Furthermore, bicyclists can give birth to a new kind of vehicle because we are  unhindered by the constraints that the auto industry has. For example the side impact laws—necessary for vehicles that go highway speeds—make it technically impossible for the auto manufacturers to make a car that weighs less than 1000 pounds. Also the car industry is constrained by the limitations of mass production. Before the car industry can roll a microcar through it massive factories it must first ensure that there is a very large market for it. Bike shops, in contrast, only have to convince a few hundred people to buy one of their hand-crafted microcars which they can build from off-the-shelf parts. This situation is similar to the pre-mass production era when many small shops produced only a few hundred of their often eccentric cyclecars, the original microcars. Cyclecars were small inexpensive cars manufactured mainly between 1910 and the late 1920s. They were called cyclecars because they often incorporated motorcycle parts. They were very inexpensive for cars; the Buckboard cyclecar cost as low as $200 ($2,800 in 2010 dollars).

The auto industry must also overcome peoples’ expectations that all cars must be able to drive at highway speeds and highway distances. There is a movement among environmentally-minded manufacturers to create a new class of cars called Neighborhood Electric Vehicles, which weigh less than 3,000 pounds, typically have a range of 30 miles and have a top speed of 25 mph. But given what I know about American culture I don’t think this movement will succeed. People balk at the idea of a car that only goes 25mph, but a bike that goes that speed is cool.

So what is stopping a bike shop from making a microcar? Two things: the legal definition of a bicycle, and technical constraints. For an electric-assist bicycle to be legally considered a bicycle (rather than a motorcycle or car) it’s motor must be less than 750 watts, it must have functional pedals, it’s maximum speed must be less than 20mph, and it must have two or three wheels. This last constraint is important: if you give a vehicle four wheels it seems the full weight of automotive regulations falls upon it. There is some hope that these legal constraints will rise. For example I read recently that the motor limit in New York has been raised to 1,000 watts.

So is it technically possible to build a vehicle within those legal constraints that achieves the same functionality as a microcar? I believe it is. My Xtracycle cargo bike is almost there. Why hasn’t anyone done it before? Maybe because electric motor and battery technology wasn’t so well developed until now. Maybe the consumer base wasn’t there. Maybe the gas price, tax, insurance, and licensing forces weren’t in alignment. I sense that they are coming into alignment now.

What would it take to turn a cargo bike into a microcar?

What can a microcar do that a cargo bike can’t do? One big difference is speed. We can make a cargo bike faster by adding an electric motor, but we still have the 20mph legal limit. For me this is not a problem. Carrying capacity is more important than speed for me, and electric motors have an advantage over internal-combustion engines in this regard. For a given horsepower, electric vehicles such as my bike tend to be slow but with great carrying capacity, whereas internal-combustion-powered vehicles tend to be faster but unable to carry as great a load. For example my bike has a 400-pound carrying capacity and a maximum speed of 20mph, whereas the P50 described above probably can’t carry much more than one 200-pound person but it can carry them at 38mph. I would much prefer a microcar that can carry a lot rather than a microcar that is fast.

The next biggest functionality a microcar has that a cargo bike doesn’t have is a canopy. I’ve outlined my design criteria for an Xtracycle canopy in a previous post. Bicycles have a long history of incorporating canopies; bikes with a canopy are called velomobiles. However, again, velomobiles seem to be built for speed rather than cargo capacity. Another design direction that incorporates a canopy with a bike is the bicycle car, which typically means a pedal-powered vehicle with four wheels. A pedicab is a similar idea.

Other advantages of a microcar have to do with comfort and ease of use. Bicycling manufacturers are used to asking the bicyclist to conform to the bike.  Our microcar must instead incorporate some of the same human-centered design that makes Apple products such big hits. Bicycle manufacturers haven’t yet begun to explore the design opportunities that come from having an electric motor and a big honking battery on a bike. An obvious opportunity is to power the bike lights from the central battery rather than have separate batteries and switches for each light. Now that we have a canopy we can begin to think about how to keep passengers warm. Another  set of design opportunities comes from the cyclist no longer having to be thrifty with power. For example I took the toe clips off of my Xtracycle since any minor advantage they offer is overwhelmed by what the motor can do. And it now becomes possible to consider a shaft drive instead of a chain drive, since its minor inefficiency pales in comparison with the advantage of not having a greasy chain.

Here are some general microcar design criteria with some ideas about how they might be satisfied. Got ideas of your own? Please comment and I’ll add them to this post.

My microcar can carry the driver and one passenger comfortably. The biggest design choice here seems to be having people sit side-by-side or front-back. I like front-back so that the vehicle is narrow. This is important so that the vehicle can ride on the shoulder since it is slow. But a side-to-side design, particularly a recumbent trike, could be explored.

My microcar protects the occupants from rain, wind and cold. The traditional microcar uses sheet metal or plastic. I think cloth is the best material since it is lightweight. A cloth cover can be changed to fit the season. The winter cover could be insulated. And it may be possible to integrate electronics into the cloth, such as tail lights and headlights.

My microcar is easy to maintain.

My microcar weighs between 100 and 1000 pounds.

My microcar is powered by a 500 to 1,000 watt motor. Now that New York will have a 1,000-watt maximum motor size, I am imagining an Xtra-cycle microcar that has a tricycle attachment replacing its rear wheels. And each wheel of this trike attachment has a 500-watt electric motor hub. Now we’re talking.

My microcar has a top speed of 20mph.

My microcar costs less than $5000.

My microcar has a 400 pound total cargo and occupant capacity.


Bicycle Canopy Research

I’ve been doing a little research on bicycle canopies. There are surprisingly few examples out there. Here are a few that come up on the top of a web search.
(Update: check out my own canopy design and instructions for making it.)

The Environmentalist

Top of the list is the Bicycle Canopy Company. The name sounds promising but the product does not look much better than my prototype. Owner Jill Nerkowski writes “I joined my landscaping and gardening experience with  bicycle mechanics and came up with my idea for a traveling greenhouse…This bicycle canopy can be constructed in your home, with ordinary household tools and easy to purchase materials.” You have to give her credit for her massive amounts of hutzpah. She looks like a lovable kook but hey, there but for the grace of God go I :-).
http://jillnerkowski.weebly.com
http://jillnerkowski.wordpress.com/about/

The Seeker

Farther down the list is someone who back in 2005 announced his search for any sort of bicycle canopy. He concluded that most of the work being done so far to create a weatherproof bike has been the creation of velomobiles: short bullet-shaped bicycles with a hard enclosure. Velomobiles don’t seem to be good car-replacement vehicles. The tend to emphasize speed, they are expensive and they weigh a lot. I can’t imagine them carrying cargo or a passenger.
http://greenash.net.au/posts/thoughts/in-search-of-an-all-weather-bike

The Bent

I came across this guy Joe Kochanowski who has made over 50 recumbent (a.k.a bent) bicycles over the last twenty years, some of them enclosed like a velomobile. He writes “I am not married so I can do things like overhaul a car engine in my living room without anyone complaining.” I admit to a bit of envy. Go Joe.
http://www.outsideconnection.com/gallant/hpv/joe/

The European

As usual the Europeans are way ahead of us in bicycle technology. The French have brought to market what appears to be the only commercially successful bike canopy I’ve seen.
http://www.veltop.eu/index.php?en

Here’s a cute review by a young citizen:
http://velocoque.free.fr/spip.php?article27

Conclusion

I’m concluding that the bike canopy field is wide open. My design has many elements that I haven’t seen elsewhere: integration with the open-source Xtracycle standard; cold-weather insulation; use on an electric cargo bike; and the highly flexible conestoga design. What I’ve seen is canopies designed for either speed or light rain protection. I haven’t seen any designs that are a serious approach to car-replacement.

For some reason I haven’t seen any Xtracycle canopies. You’d think this would be a popular idea in rainy Portland Oregon which is a nexus of the bike movement. I think the Xtracycle is uniquely suitable for a canopy because both the driver and passenger are on the same bike. This allows one large canopy. The main protection needs to be for the passenger and cargo (perhaps using aerogel insulation which is extremely efficient, thin, and lightweight and may someday be available transparent). The driver, who will be hot from exertion, just needs to be protected from rain and wind. (In my experience I get quite hot biking even in the coldest weather. Maybe a very well insulated canopy could allow the driver’s excess body to warm the passenger.) I think a design that emphasizes covering a passenger will also be easier for the general public to accept. People have already seen plenty of bike trailers with such coverings. With an Xtracycle, it’s a small step to extend the passenger covering to the driver.

Another design opportunity is that the Xtracycle allows you to connect a canopy much farther forward and back than other bikes. The forward connection can even be to the sides of the pedals without interfering with the pedals. If you’ve ever carried lumber on an Xtracycle equipped with the Long Loader accessory you know what I mean.

Another design opportunity: the canopy provides a place to put your flexible thin-film solar panels.

Another design opportunity: the power of an electric bike makes it possible to have a heavier perhaps wooden “wagon” that you can just chuck stuff into or even lock it up. I can imagine a pick-up truck like bicycle. Maybe the bottom of the wagon should be curved like a Conestoga wagon so the cargo doesn’t fly out. Then you just attach a canopy when necessary.

I commend the brave souls noted in this post for the work they’ve done to advance the cause of making bicycles practical for year-round use. I am perplexed that this cause has been completely abandoned by industry, government, and yes, even bicycle manufacturers.

DIY sleeve extender for winter bike commuting

Wrists are prone to getting cold while winter bike commuting. With arms stretched out to reach the handlebars, a gap appears between jacket and gloves. When my wrists are cold, I’m cold.

I tried jackets with sleeves that cinched over my gloves. These slipped. I tried giant over-mitts that tightened over my jacket sleeves. These slipped too, and the big mitts were bulky to carry around in my pockets when I was off the bike.

So I made this simple sleeve extender, shown in this photos after the jump. It’s super to easy to use, doesn’t slip, and is very low bulk. It also happens to look like an extra long shirt sleeve, rather than technical mountain climbing gear.
Continue reading DIY sleeve extender for winter bike commuting

Mounting a third water bottle cage on a Rans V-Rex recumbent

I wanted to follow the pattern of Rans V-Rex Commuting Weapon by adding an additional water bottle mount to carry a light system battery.

That’s what the picture above is. There’s also a large version. Here are some notes on how this was created.

Continue reading Mounting a third water bottle cage on a Rans V-Rex recumbent